Communication: Electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations
نویسندگان
چکیده
منابع مشابه
Electronic properties of zig-zag carbon nanotubes : a first-principles study
.......................................................................................................... 5 Chapter 1 – Introduction ............................................................................. 8 1.1 Carbon Nanomaterials ............................................................................................9 1.2 Applications of Carbon Nanotubes ..............................
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولThe zig-zag product
The expander constructions based on algebraic methods can give expanders that are both explicit (i.e. we can quickly construct the graph, or even obtain neighborhood information without constructing the entire graph, and Ramanujan, meaning that the spectral gap is essentially as large as possible. It also follows from this spectral bound that the edge expansion of Ramanujan graphs is essentiall...
متن کاملTemperature dependence of the band gap of semiconducting carbon nanotubes.
The temperature dependence of the band gap of semiconducting single-wall carbon nanotubes (SWNTs) is calculated by direct evaluation of electron-phonon couplings within a "frozen-phonon" scheme. An interesting diameter and chirality dependence of E(g)(T) is obtained, including nonmonotonic behavior for certain tubes and distinct "family" behavior. These results are traced to a strong and comple...
متن کاملMany-body effects in semiconducting single-wall silicon nanotubes
The electronic and optical properties of semiconducting silicon nanotubes (SiNTs) are studied by means of the many-body Green's function method, i.e., GW approximation and Bethe-Salpeter equation. In these studied structures, i.e., (4,4), (6,6) and (10,0) SiNTs, self-energy effects are enhanced giving rise to large quasi-particle (QP) band gaps due to the confinement effect. The strong electron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2012
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4716178